Seepage Investigation and Remedial Grouting, Crafton Hills Reservoir, California

2016 AEG Annual Meeting, Kona, Hawaii

Holly J. Nichols, CEG
Jennifer L. Dean, CEG
Matthew Zimmerman, CEG

California Department of Water Resources
Outline of Presentation

- Background of the dams
- Seepage History
- Geologic Investigation
- Remedial Grouting Plan
- Conclusions
Background – Site Location

California State Water Project (SWP)

East Branch Extension
Background – Site Location

Original Dam 2002

Enlargement Dam 2014
Background – Regional Geology
Seepage History – CH Reservoir

Appx seepage rate ~30 feet per day
Seepage History – CHE Reservoir

~160 ft/d
~20 ft/d
Seepage History – CHE Reservoir

So what?
Geologic Investigation – Objectives

- Determine seepage pathway(s) to develop remedial grouting plan
- Determine hydraulic properties of rock types under various pressure conditions
Geologic Investigation

Potential seepage pathways

Through outlet pipe??

Through/along dike?

Through discrete fractures?
Geologic Investigation – Methods

- Drill and install piezometers in different rock types
- Hydraulic conductivity tests
- Falling head tests
- Monitor response times to fluctuations in reservoir
- Dye tracer test
Geologic Investigation – Drilling

- 14 borings (rock coring)
- 14 piezos
- 5 VWPs
Geologic Investigation – Drilling

- Evidence of grout curtain
Geologic Investigation – K-Testing

- HCT ranged from 0 to 14 Lugeons
- Falling head tests ranged from 0.4 to 5.8 feet per day
Geologic Investigation – K-Testing

Measured permeability (cm/s)

Hydraulic conductivity test
Falling head test

- Felsic dike (~5.8 ft/d)
- Mafic dike (~2.7 ft/d)
- Meta-granitic (north)
- Meta-granitic (south)

CHE-23
CHE-29 (low)
CHE-29 (high)
CHE-30A
CHE-31 (low)
CHE-31 (high)
Geologic Investigation – Monitoring

1.2 days

4.5 days

3.3 days
Geologic Investigation – Dye Test

- Single packer set at 40 ft deep
- Applied 40 psi for 2 hours
- Monitored wells every 15 minutes
Geologic Investigation – Dye Test

Injection point

~85 feet per hour

+2 hrs

~400 feet
Geologic Investigation – Dye Test

Injection +2.5 hrs: Dye observed in CHE-20, -21, and CHE-22
Geologic Investigation – Dye Test

Injection +3.75 hrs: Dye observed in CHE-20, -21, -22, -25, -30A and CHE-31

+3.75 hrs
Geologic Investigation – Dye Test

Injection +4.5 hrs: Dye observed in CHE-20 and CHE-25
Geologic Investigation – Dye Test

Injection +6 hrs: Dye observed in CHE-25
Geologic Investigation – Dye Test

Injection +8 hrs: Dye observed in CHE-25
Geologic Investigation – Findings

- Groundwater responds differently in different materials
- Permeability testing indicated:
 - Felsic dike is more permeable under no/low pressure (up to 5.8 ft/day)
 - Meta-granitic rock is slightly more permeable under pressure (0.2 – 0.6 ft/day at 40 psi, versus 0.4 – 0.6 ft/day at no/low pressure)
- Dye test indicated:
 - a semi-impervious boundary condition along the dike
 - water moves quickly through the meta-granitic rock under pressure (85 ft/hour!)
Geologic Investigation – Findings

- Felsic dike does appear to be the primary seepage pathway:
 - Bubbling during filling
 - Not previously exposed to constant head
 - Most permeable unit tested with falling head
 - CHE-25 (screened in felsic dike) exhibits artesian pressures (>2.5 feet)
 - Seepage condition at Location B has not changed
 - CHE-25 was only downstream well where dye was observed
Remedial Grouting Plan

Phase 1

Phase 2

Phase 3
Conclusions

- The dikes seem to act both as a preferential pathway and an impediment to groundwater flow.

- The behavior of the felsic and mafic dikes vary substantially using typical grouting pressures (40-60 psi) and low/no pressure:
 - Used this information to develop a more realistic remedial grouting program.

- The calculated permeability rates are different but in the same neighborhood as the observed seepage rates.