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The Issue…

• Infrastructure operation / safety (dams, tunnels, bridges)

• Excessive erosion -> high remediation costs, loss of life
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Rock Scour Mechanisms – Hydraulic Controls

• Inertial force – mass of water hitting rock, magnitude ~ um

• Fluctuations – turbulent eddies, u’
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Rock Scour Mechanisms

• Block removal along existing and newly formed fractures



Current scour technology

• Erodibility Index Method

• Semi empirical 

• Failure mechanism not 

considered

• Comprehensive Scour Model

• Physics based

• Simplified rock structure zb

z (uplift)

Simplified Rock Mass

Rock blocks



– Hydraulics: Physical hydraulic model

– Hydraulics: Instrumented field blocks

– Rock Mass: LiDAR

Point Cloud at Spaulding Dam

Data Collection for 3D Block Erodibility

Instrumented field blocks



3D Instrumented Block in a Flume

Flume at UC-Berkeley Richmond Field Station

Schematic of constructed ramp for flow over 3D block 

• 2D channel flow

• Froude scale model

• Length scale ~ 10

u(x,t)

Rotatable Block Mold



Flume at UC-Berkeley Richmond Field Station

3D Instrumented Block in a Flume

Block location

Rotatable Block Mold

• Instrumentation

• pressure (12)

• displacement (3)

• 3D flow velocity (1)

• flow depth (2)



3D Instrumented Block in a Flume

• Modeled scenarios:
– 9 discharges (Q1-Q9)

– high/low turbulence

– 3 block protrusions

– 13 block rotation angles

• Goal:
– Comprehensive, high-resolution 

data set (> 1,000 runs)

High Turbulence Case

Flush Block

ADV

Baffle Blocks



3D Instrumented Block in a Flume

• Real-time video (165 deg rotation, low Tu)

Side View Top View



3D Instrumented Block in a Flume

• Slow motion 1FPS (165 deg rotation, low Tu)

Side View Top View
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3D Instrumented Block in a Flume

flow direction

ψ = 165 deg.



3D Instrumented Block in a Flume

flow direction

ψ = 165 deg.
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Block Theory Approach



Block Theory Approach
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Block Theory Approach



Block Erodibility Threshold
• Block protrusion effects

Flow               0 deg.                    45 deg.                90 deg.                135 deg.               180 deg.

Protrusion ~ 1 mm

Protrusion ~ 4 mm



Block Erodibility Threshold
• Turbulence effects

Flow               0 deg.                    45 deg.                90 deg.                135 deg.               180 deg.

Low Tu ~ 2.5%

High Tu ~ 6.5%



Block Theory Resistance Parameter Erosive Capacity Parameter

Erodibility Threshold

Framework for prediction

f (block shape, drag)f (joint orientation, ϕ)



Variability in Scour Process

Scour Failure 

Probability



• Block erodibility threshold highly influenced by 3D geologic 
structure

• Turbulence can lower block erodibility threshold (NEED to 
CONSIDER FLUCTUATIONS, not just mean velocity).

• Reliability based block theory approach provides a way to 
incorporate 3D site specific rock structure and variability into 
scour assessment

• Critical areas & key variables can be targeted leading to more 
efficient field investigations / remediation designs

Summary



Questions?


