Environmental & Engineering Geology Volume 30 Number 4 November 2024

Determining Ground Water Table in Slopes with Horizontal Drains and Design Framework for Length and Spacing

S.O.A.D. Mihira Lakruwan, Akiyoshi Kamura, Motoki Kazama

APPENDIX C

Factor of Safety Enhancement by Porewater Force Reduction

The reduction in the U by HDs increases the effective stress (N'), which in turn increases the frictional resistance acting on the failure wedge enhancing the stability. Therefore, the method for using the ΔU to predict the ΔFS is discussed in this section.

According to the method of slices (Figure 9), the FS of the slope before applying the HDs can be defined as:

$$FS = \frac{\sum_{i=1}^{n} [(W_i \cos \alpha_i - u_i) \tan \varphi' + c' \Delta x_i \sec \alpha_i]}{\sum_{i=1}^{n} W_i \sin \alpha_i}$$
(A.1)

where c' and Φ' denotes the effective cohesion (kN/m) and effective friction angle of the slip surface material, respectively, W_i is the weight of the slice (kN/m), u_i symbolizes the PWP on the slice (kN/m), and Δx_i is the slice width.

Let the resultant PWP force reduction on a slice and FS increment by applying HDs equal to Δu_i (kN/m) and ΔFS , respectively.

$$FS + \Delta FS = \frac{\sum_{i=1}^{n} [(W_i \cos \alpha_i - (u_i - \Delta u_i)) \tan \varphi' + c' \Delta x_i \sec \alpha_i]}{\sum_{i=1}^{n} W_i \sin \alpha_i}$$
 (A.2)

From Equations (28) and (29)

$$\Delta FS = \frac{\sum_{i=1}^{n} \Delta u_i \tan \varphi'}{\sum_{i=1}^{n} W_i \sin \alpha_i}$$
 (A.3)

The total PWP force reduction on the slip surface (ΔU (kN/m)) can be defined as,

$$\Delta U = \sum_{i=1}^{n} \Delta u_i = \sum_{i=1}^{n} \left(u_{i(0)} - u_{i(HD)} \right)$$
 (A.4)

Where $\Delta u_{i(0)}$ is the initial porewater force and $\Delta u_{i(HD)}$ is the porewater force resultant by HDs on a slice. Then,

$$\Delta FS = \frac{\Delta U \tan \varphi'}{\sum_{i=1}^{n} W_i \sin \alpha_i} \tag{A.5}$$

Accordingly, the reduction in the PWP force acting on a slip surface by HDs demonstrates the amount of FS increment that can be achieved.